Play

Date: December 4th, 2012

Title: Astronomy Word of the Week : Retrograde

Podcaster: Dr. Christopher Crockett

Organization: United States Naval Observatory

Link: http://christophercrockett.com
http://earthsky.org/team/christophercrockett

Description: Planets loop back in their orbits, moons go the wrong way around their home worlds, and entire solar systems are turned around backwards.  The astronomy word of the week is “retrograde”.

Bio: Dr. Christopher Crockett is an astronomer at the United States Naval Observatory in Flagstaff, Arizona. His research involves searching for planets around very young stars (“only” a few million years old). It is hoped that the results from this research will help constrain models of planet formation and lead to a better understanding of where, when, and how often planets form. Chris is also passionate about astronomy outreach and education and will talk for hours about the Universe if you let him.

Today’s Sponsor: This episode of 365 days of Astronomy is sponsored by Christopher Barber and dedicated to his son John on his 12th birthday. Have a special birthday as you start your next trip around the sun. Your loving father, Chris.

Additional sponsorship for this episode of 365 days of astronomy was provided by Clear Skies Observing Guides, a Modern Day Celestial Handbook. www.clearskies.eu..Clear skies observing guides, or CSOG, is a new concept in visual amateur astronomy. The observing guides contain thousands of objects to observe through amateur telescopes, with matching tours for GOTO telescopes and matching AstroPlanner plan-files. CSOG allows you to target deep-sky objects and carbon stars you never observed before, night after night. Wishing astronomers around the world: Clear skies..! ”

Transcript:

Sometimes, the planets seem to move backwards!

Typically, the planets shift slightly eastward from night to night, drifting slowly against the backdrop of stars.  From time to time, however, they change direction.  For a few months, they’ll head west before turning back around and resuming their easterly course.  This is “retrograde motion”.  Though it baffled ancient astronomers, we know now that retrograde planets are an illusion caused by the motion of the Earth.

You can test this the next time you pass a car on the highway.  As you approach the slower car, it is clearly moving in the same direction you are.  Right as you pull along side and pass it, however, the car appears to move backwards for just a moment.  As you continue pulling away, the car resumes its forward motion.

The same thing happens as the Earth passes the slower moving outer planets.  When we pass Jupiter, for example, the gas giant appears to reverse course in the sky for a couple of months.

This makes the planets appear to move very strangely. Ancient astronomers went to complicated lengths to try and explain these motions.  They envisioned each planet not only orbiting the center of the solar system (which to them was the Earth) but also spinning around a moving point on their orbit.  Imagine whipping a ball on a length of string around your hand while you rotated in place.  Astronomers like Copernicus and Kepler finally set us all straight when they realized the Earth orbited the Sun.  Suddenly, the retrograde motion made a lot more sense!

Retrograde illusions on other planets can lead to very strange phenomena.  On the Mercury, for example, the Sun sometimes moves in retrograde!  As the planet speeds through its closest approach with the sun, its orbital speed overtakes its rotational speed.  An astronaut on the surface would see the Sun partially rise, then dip back below the horizon, then rise again before resuming its east-to-west trek across the sky.  Once a year, Mercury gets two sunrises on the same day!

But retrograde movement isn’t always an illusion.

There are real retrograde motions in the solar system.  Venus rotates in the opposite direction from every other planet!  If the clouds ever parted, the Venusians would see the Sun rise in the west and set in the east.

Some moons also have retrograde orbits around their planets.  Most of the large moons orbit in the same direction their planet spins.  But not Triton, the largest moon of Neptune.  And among the smaller asteroid-like moons that swarm about the giant planets, many have retrograde orbits.

A retrograde orbit most likely means the moon was captured after the planet formed.  Triton probably came out of the Kuiper Belt, the region of icy debris beyond Neptune where Pluto lives.  Perhaps a collision in the belt sent Triton careening inward toward the Sun.  A close encounter with Neptune could have slowed it down and forced it to settle into a backwards orbit around the distant planet.

In the past decade, astronomers have also discovered planets in other solar systems with retrograde orbits.  These exoplanets orbit their suns in the opposite direction from how the star rotates.  This is puzzling because planets form out of debris disks that orbit young stars, disks which share the star’s rotation.  The only way to get a planet orbiting backwards is either by a near-collision with another planet or if another star once passed too close to the system.  Close encounters tend to disrupt orbits.

Retrograde motion refers to the occasional backwards motion of the planets.  It is entirely an illusion caused by the moving Earth passing the outer planets in their orbits.  Real retrograde motions—of planet rotation, orbiting moons, and planets in other solar systems—are a sign of long forgotten collisions and captures.  They are one way that astronomers piece together the history of our solar system, and the systems of other stars in our Galaxy!

End of podcast:

365 Days of Astronomy
=====================
The 365 Days of Astronomy Podcast is produced by the New Media Working Group of the International Year of Astronomy 2009. Audio post-production by Preston Gibson. Bandwidth donated by libsyn.com and wizzard media. Web design by Clockwork Active Media Systems. You may reproduce and distribute this audio for non-commercial purposes. Please consider supporting the podcast with a few dollars (or Euros!). Visit us on the web at 365DaysOfAstronomy.org or email us at info@365DaysOfAstronomy.org. Until tomorrow…goodbye.