Play

Date: December 12th, 2012

Title: Astronomy Word of the Week : CME

Podcaster: Dr. Christopher Crockett

Organization: United States Naval Observatory

Link: http://christophercrockett.com
http://earthsky.org/team/christophercrockett

Description: Every so often, the sun unleashes powerful plasma waves upon the solar system.  When aimed at the Earth, we experience a geomagnetic storm.  The astronomy word of the week is “CME”.

Bio: Dr. Christopher Crockett is an astronomer at the United States Naval Observatory in Flagstaff, Arizona. His research involves searching for planets around very young stars (“only” a few million years old). It is hoped that the results from this research will help constrain models of planet formation and lead to a better understanding of where, when, and how often planets form. Chris is also passionate about astronomy outreach and education and will talk for hours about the Universe if you let him.

Today’s Sponsor: This episode of “365 Days of Astronomy” is sponsored by — no one. Please consider sponsoring a day or two. Just click on the “Donate” button on the lower left side of this webpage, or contact us at signup@365daysofastronomy.org.

Transcript:

Every so often, the sun burps.  But, unlike myself, when the sun burps, it does so with the power of twenty million nuclear bombs.  These hiccups are known as coronal mass ejections (CMEs)—powerful eruptions near the surface of the sun driven by kinks in the solar magnetic field.  The resulting shocks ripple through the solar system and can interrupt satellites and power grids on Earth.

During a CME, enormous bubbles of superheated gas—called plasma—are ejected from the sun.  Over the course of several hours, one billion tons of material are lifted off the sun’s surface and accelerated to speeds of one million miles per hour.  This can happen several times a day when the sun is most active. During its quieter periods, CMEs occur only once every five days.

The underlying cause of CMEs is not well understood.  Astronomers agree, however, that the sun’s magnetic field plays a major role.  Because the sun is a fluid, turbulence tends to twist the magnetic field into complex contortions.  Twist the field too much, and it kinks—much like a phone cord or toy Slinky.  These kinks snap the magnetic field and can potentially drive vast amounts of plasma into space.

The plasma itself is a cloud of protons and electrons carried aloft by the solar wind.  Traveling at a million miles per hour, the ejecta can cross the 93 million mile distance to Earth in just a few days.  A jet moving that fast could get you from Los Angeles to New York in 18 seconds.

Because CMEs get blown off the sun in all directions, most don’t come anywhere near Earth.  But every so often, an eruption is aimed right at us.  When the plasma cloud hits our planet, a geomagnetic storm follows. The shock wave of charged particles compresses the Earth’s dayside magnetic field while the nightside gets stretched out.  Like an elongated rubber band, the terrestrial magnetic field eventually snaps back with the same amount of energy as a bolt of lightening.

The onslaught of charged particles and the temporary restructuring of the Earth’s magnetic field has observable effects.  Auroral lights, usually only seen near the poles, can drift to lower latitudes and become more brilliant.  The disturbance of the magnetic field can also expose Earth to deadly cosmic rays.  The atmosphere still provides enough protection for everyone on the ground.  But astronauts in space may receive lethal doses of radiation.  During a solar storm in 1989, cosmonauts aboard the Mir space station received their maximum yearly radiation dose in just a few hours!

The real long-lasting danger comes from the storm’s effect on technology.  The flurry of magnetic activity and induced electric currents has the potential to severely disrupt power grids, satellites, communication networks—anything that uses electricity.  When the sun aimed a CME at us in 1989, the resulting storm collapsed the Hydro-Quebec power grid.  Six million people were without power for nine hours.

But the 1989 storm is nothing compared to the geomagnetic storm of 1859.  Known as the Carrington Event, after amateur astronomer Richard Carrington who observed the flares that triggered the storm, it is the most powerful geomagnetic storm ever recorded.  Aurora were observed as far south as Hawai’i and the Caribbean.  Witnesses at higher latitudes reported being able to read newspapers by the light of the aurora alone.  Telegraph networks around globe catastrophically failed; operators received shocks and telegraph paper caught on fire.

A repeat of the Carrington Event in today’s far more interconnected world would be devastating.  Cascading failures could quickly shut power down to millions of people in a matter of minutes.  Communication networks would fail and GPS satellites, upon which the entire air traffic system relies, would shut down.  A repeat of 1859 could be truly catastrophic!

Obviously, we don’t want to be surprised by a powerful Earth-bound CME.  That’s why astronomers study the sun.  Besides the joy of discovering how stars work, a better understanding of solar activity can help us be better prepared.  With even just a few hours warning before an impending CME strike, we could safely shut down and protect essential services.  Disruptions may then only last a few hours, rather than the days, weeks, and months that might otherwise occur.

Coronal mass ejections are powerful eruptions on the sun’s surface.  Caused by instabilities in the sun’s magnetic field, they can launch a billion tons of superheated gas into space at over one million miles per hour.  While most drift harmlessly across the solar system, occasionally one is aimed at Earth.  When that happens, the resulting magnetic storm can severely disrupt electrical systems and produce brilliant auroral displays.  CMEs are just another reminder of how fragile our pale blue dot is as it races around the sun.

End of podcast:

365 Days of Astronomy
=====================
The 365 Days of Astronomy Podcast is produced by the New Media Working Group of the International Year of Astronomy 2009. Audio post-production by Preston Gibson. Bandwidth donated by libsyn.com and wizzard media. Web design by Clockwork Active Media Systems. You may reproduce and distribute this audio for non-commercial purposes. Please consider supporting the podcast and Astrosphere New Media Association with a contribution. Visit us on the web at 365DaysOfAstronomy.org or email us at info@365DaysOfAstronomy.org. Until tomorrow…