Explained: Missing Planets in Ring Systems

Nov 17, 2021 | Daily Space, Exoplanets, Planets

Explained: Missing Planets in Ring Systems
IMAGE: A comparison of the three phases of ring formation and deformation found in these simulations by ATERUI II (top) with real examples observed by ALMA (bottom). The dotted lines in the simulation represent the orbits of the planets, and the gray areas indicate regions not covered by the computational domain of the simulation. In the upper row, the simulated protoplanetary disks are shown from left to right at the start of planetary migration (Phase I), during planetary migration (Phase II), and at the end of planetary migration (Phase III). CREDIT: Kazuhiro D. Kanagawa, ALMA(ESO/NAOJ/NRAO

In the past decade, we’ve developed amazing capacities to directly image planetary systems forming around young stars. With the Atacama Large Millimeter/submillimeter Array (ALMA) in particular, we have seen amazing systems with delicate ring structures that sometimes even have knots of material thought to be planets.

It’s the “sometimes” in that statement that is a bit troubling.

We like to think that planetary formation is a nice clean process. Giant molecular cloud starts to collapse and fragment. The fragments will spin and flatten as they collapse, with a star taking shape in the center, and planets cleaning out rings in the disk as they gather up their own mass. Over time, the star will brighten and push out leftover remains, the system will be left with some number of planets, maybe an asteroid belt, and icy stuff out in the outskirts.

It’s a nice picture. It is also overly idealistic. Solar system formation is a violent, planet-hit-planet kind of process, and thanks to a new paper in The Astrophysical Journal and led by Kazuhiro Kanagawa, we are learning that the gravitational interactions between newly formed planets and their surrounding rings of unused material migrate planets into the centers of gaps where we may not see them. 

This work was done using supercomputers to simulate all the motions of gas, dust, and forming planets in a variety of systems and evolve those simulations to match actual systems observed by ALMA. Three different planet and ring stages were uncovered in these simulations, and here I quote from the NAOJ release: In Phase I, the initial ring remains intact as the planet moves inwards. In Phase II, the initial ring begins to deform and a second ring starts forming at the new location of the planet. In Phase III, the initial ring disappears and only the latter ring remains.

These results help us understand why planets are only rarely spotted interacting next to rings.

Unfortunately, we are only able to really see the outer parts of disks clearly and resolve different structures at great distances from stars. It is hoped that the next generation of space and ground telescopes will allow us to understand the inner workings of systems more and verify that our simulations match the reality of planet formation at all distances from a star.

More Information

NAOJ press release

Dust Rings as a Footprint of Planet Formation in a Protoplanetary Disk,” Kazuhiro D. Kanagawa, Takayuki Muto, and Hidekazu Tanaka, 2021 November 12, The Astrophysical Journal

0 Comments

Got Podcast?

365 Days of Astronomy LogoA community podcast.

URL * RSS * iTunes

Astronomy Cast LogoTake a facts-based journey.

URL * RSS * iTunes * YouTube

Visión Cósmica LogoVisión Cósmica

URL * RSS

Escape Velocity Space News LogoEscape Velocity Space News
New website coming soon!
YouTube

Become a Patron!
CosmoQuest and all its programs exist thanks the generous donations of people like you! Become a patron & help plan for the future while getting exclusive content.