NASA is planning to have astronauts on the Moon again. And as anyone who studies Moon missions will tell you, one of the biggest issues is regolith or Moon dust. The stuff gets everywhere, and since the Moon doesn’t have the same weathering processes that we do here on Earth, the tiny, tiny pieces are jagged and sharp. They can cause microtears in spacesuits and damage equipment. Engineers and scientists have been trying to solve the regolith problem for decades.
Research associate Xu Wang explained, “The problem with lunar dust is that it isn’t anything like the stuff that builds up on bookshelves on Earth. Moon dust is constantly bathed in radiation from the sun, a bombardment that gives the material an electric charge. That charge, in turn, makes the dust extra sticky, almost like a sock that’s just come out of the drier. It also has a distinct structure.”
Now, a team of researchers led by the University of Colorado at Boulder has discovered a potential dustbuster, if you will – electron beams.
Basically, the idea is to use the charge on the regolith against itself by bombarding it with more negative charges. These charges pile up in the space between the particles, and eventually, like magnets of the same polarity, the dust pushes itself away from the surface of an object.
To test the concept, various items were coated in a “lunar simulant” created by NASA to act like the lunar dust. These items were then placed in a vacuum chamber and hit with the electron beam. Per the press release: The dust poured off, usually in just a few minutes. The trick worked on a wide range of surfaces, too, including spacesuit fabric and glass. This new technology aims at cleaning the finest dust particles, which are difficult to remove using brushes. The method was able to clean dusty surfaces by an average of about 75-85%.
While the technology isn’t ready, yet, scientists are hopeful that, in the future, electron showers could be a solution to a, well, sticky problem.
More Information
“Dust mitigation technology for lunar exploration utilizing an electron beam,” B. Farr et al., 2020 8 August, Acta Astronautica
0 Comments